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Abstract

We show that the asymptotic variance constant in a stochastic simulation cannot be

estimated consistently from batch means when the number of batches is held fixed as the run

length increases.
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1. Introduction

In this paper 'we_-,ampthat there does not exist a procedure to consistently estimate the

asymptotic variance constant in a stochastic simulation using batch means when the number of

batches is held fixed as the run length increases. Thus, if consistency is desired, then the

number of batches must increase as the run length increases.

To be precise, we must first specify what we mean by an estimation procedure. To be
//

interesting, an estimation procedure should apply to a large family of stochastic processes.

Hence, let X a {X(t) : t > 01 be a measurable mapping from a measure space (fic) into

D a D[O, o), the space ol right-continuous real-valued functions on the interval [0, 00) with

left limits, endowed with the usual Skorohod topology and associated Borel a-field; e.g., see

Ethier and Kurtz [3]. Of course, we want the underlying space (0, S) to be sufficiently rich;

it suffices to let f2 = D and X(t) be the projection or coordinate map. We consider the set 9

of all probability measures P on (nf) such that there exist finite deterministic constants

g. M (P) and a - a(P) such that

n1/2 X(s)- = aB(t) as n -4 c , (1)

where => denotes weak convergence in D with respect to P and B a{B(t) :t > 0} is

standard (zero-drift, unit diffusion coefficient) Brownian motion. Our goal is to estimate a,

but we want our procedure to apply to all P E ?". In other words, the procedure should apply

to all stochastic processes X in D satisfying the functional central limit theorem (FCLT) (1).

To apply the method of batch means, we specify the number m of batches and the total run

length T. We then .onstruct our estimates from the m non-overlapping intervals of length T/m;

i.e.. let the iOh batch mean be
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X1(T) = iTM X(s)ds , 1 <_ i < m . (2)
T f(i-I) TIM

We now want a procedure for combining the m observations X I(T), .. ,, (T) in such a

way that a2 is consistently estimated as T -4 00. This "combining transformation" should

not depend on the "fine structure" of the process X. In particular, it should not depend on g

and a2. Thus, in this context we say that an etimnation procedure is a family of ,

mappings

gT :R'- R for T > 0, (3)

such that the estimate of a2 is gT(xI . X. ) when the total run length is T and

Xj(t) = xi, 1 < i < m. Note that gT can depend on T, but is independent of P.

We say that an estimation procedure is 9-consistent if for each P e 9

gT(XI(T) .... X(T)) 2 a2 (P) as T-4 00. (4)

Here =*. denotes weak convergence with respect to P in R, which is equivalent to convergence

in probability since a 2 (P) is deterministic. Since we have a negative result, we focus on this

weak consistency. We would have *strong consistency if the convergence was w.p. 1 with

respect to P.

Here is our main result. It applies to any m.

Theorem 1. There does not exist an estimation procedure that is 9-consistent.

In Section 2 we show what happens with the standard variance estimator. We see that we

do not get consistency for a 2 for any fixed m, but we can get as close as we wish by letting m

be suitably large. In Section 3 we prove Theorem 1.

Theorem 1 has applications to sequential stopping. It shows that the sufficient conditions

in Glynn and Whitt [5] for asymptotic validity are not satisfied when the number of batchcs is

held fixed as the run length grows.
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For a fixed run length, our analysis shows that it is desirable to pick the number of batches

as large as possible without seriously violating the assumption that the batches are independent

and identically distributed (i.i.d.) with a normal distribution. However, the i.i.d. normal

assumption typically holds only as an approximation and then only when there are large batch.

sizes. Statistical tests can be used to validate the assumption, but repeated tests of significance

on the same data are fraught with peril, both theoretically and empirically. Hence,

Schmeiser [9] suggested using a relatively small fixed number of batches, e.g., about 20. This

avoids the complications above and gives relatively robust confidence intervals. However, we

show that this is achieved at the expense of consistency for the variance estimator.

Asymptotically valid confidence intervals are obtained anyway of course by cancellation

methods, i.e., using the t distribution. For further discussion, see Schmeiser [9], Goldsman and

Meketon [61, Sargent, Kang and Goldsman [8], Glynn and Iglehart [4] and Damerdji [2].

2. The Standard Estimator

The standard estimation procedure is specified by

.( - T I M
grx .. ,,m) = Tem-) x.-- 1 k (5)

m _m-) i -I k (5)
i=1 M k=1

d
for all T > 0, m 'a 2 and (x, .I. . xm) e Rm . Let = denote equality in distribution.

Theorem 2. Under (1),

g(XI(T), .... , Xm(T)) => a n2 g ([B(i/m) - B((i - 1)/m)] , 1 5 i < n) .nton For

d 02 2 GRA&I lern-_ in R, TAB 0m - juncedl [
1 oat ton

where X-I is a chi-square random variable with m - 1 degrees of freedom.

Proof. Note that istritIOW
ABilvbl.'it _odoe

Dist 9v-s 1 o
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,XT) r iTm X (s) ds f 1 T 1)
rn-1i =L T nT j

I P.

2~~l d (y X2 Ib I
CT2 rn m (i/m) - B((i - 1)/m) - = - I d by (1)

m-1 iL M ' T r-

Note that a XM.,-/m-I has mean a2 and variance 2I4/(m - 1); see p. 168 of Johnson

and Kotz [7]. Moreover, as m increases,

SX => 02  (6)

m

and

m - a2 = N(O,2a 4 ) (7)

where N(m, a 2 ) denotes a normally distributed random variable with mean m and variance a-.

Hence, we can get as close as we want if we choose m suitably large. Moreover, we can

obtain consistency under extra regularity conditions if m -* and T - 00 so that Tim -4 cc

see Goldsman and Meketon [6] and Damerdji [2]. In fact, Damerdji even proves strong

consistency for a class of stochastic processes.

3. Proof of Theorem 1

To establish the negative result, it suffices to restrict attention to probability measures P

such that X coincides with aB where B is standard Brownian motion. Then, for any m and T,

(XI(T), . . . ,Xr(T)) = aB(T/m), .. , m [B(T) - B(T(m-I1)1m)] (7)

so that the batch means are distributed exactly as m ii.d. normal random variables with mcan

0 and variance a 2rm/T. Without loss of generality, we can remove the mIT factor by
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considering the transformed functions

gT(XlI. Xm) = T Lx .  - x . (8)

Note that

d
gT(X 1 (T). Xm(T)) = gT(aN) for all T, (9)

where aN a (oN, . . , oNo) and N is a fixed vector of ii.d. standard (mean 0, variance 1)

normal random variables.

Now consistency requires that

9T(GN) = o as T -.) oo (10)

for all a > 0, but this cannot happen for two or more different positive values of o, say a

and 02. To see this, first note that the convergence in probability for o in (10) implies that

there is a sequence { T, : n 1 } of deterministic positive numbers with T,, - 00 such that

gT .(oN) -ao w.p.1 as n - ; (11)

see Theorem 4.2.3 of Chung [1]. By (10), ,T (o2N) => o2 as n -* o. Hence, there is a

deterministic subsequence {T, : n _ 1 } of {T, : n > 1 } such that

g,(aiN) - a i w.p. 1 as n -- (12)

for both i = 1 and 2. Hence, for i = I and 2, gT'(x) --- a i for almost all x with respect to

the law of aiN, which implies that gr-(x) -- ai for almost all x with respect to Lebesgue

measure on R", since aiN has a positive density with respect to Lebesgue measure. However,

it is not possible to have j7r (x) simultaneously converge almost everywhere with respect to

Lebesgue measure to two different limits. (The set of convergence to one limit must be

contained in the null set of non-convergence for the other limit.)
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